The Hemolytic Uremic Syndrome

Prof. Sajid Maqbool
Department of Pediatrics, Shaikh Zayed Hospital, Lahore

The triad of thrombocytopenia, microangiopathic hemolytic anemia and acute nephropathy characterizes the hemolytic uremic syndrome (HUS). The name was given by Gasser and coworkers in 1955, with the belief that future studies would reveal a variety of causes, pathogenic mechanisms and subsets of this syndrome. HUS has been reported from many parts of the world, mainly USA, Britain, France, Argentina, Netherlands and South Africa. Cases have also been reported from Bangladesh, India and more recently Pakistan. Affecting mainly infants and children under 2 years of age, the disease has become one of the most important causes of acute renal failure in children, and generally follows an episode of bloody diarrhea.

Although many bacteria, viruses, some cytotoxic drugs have been implicated, etiology and predisposing factors remain unclear.

The following subgroups of HUS are seen in children.

A) Typical
By far the commonest group, it is usually associated with diarrhea, and affects infants and young children. It often occurs in epidemics, in the summer. When it follows shigella dysenteriae infection, it is seen in developing countries, and carries a worse prognosis.

B) Atypical
Also referred to as sporadic HUS or non-diarrhea associated HUS, it affects children of all ages and may follow a relapsing or progressive course.

Etiology
The clinical and epidemiologic features of typical childhood HUS suggest an infectious cause and a wide variety of pathogens, bacteria as well as viruses have been implicated. The viruses included in the list are coxsackie A4, B2, or B1, Echo, influenza and EBV. The proof that viruses are in fact involved in the pathogenesis of HUS is at times anecdotal and generally not reproducible. Individual cases or small outbreaks of HUS have reportedly been associated with Salmonella, Campylobacter, Yersinia and the pneumococcus. Karmali in 1983 reported that eight of 15 patients with HUS had the presence of infection with E. coli strain 0157:H7, which produced a cytotoxin toxic to Vero Cells. The association of verotoxin-producing organisms and HUS was subsequently confirmed from Canada, USA and UK. It was found that infection with this organism frequently preceded HUS and that the organism produced massive amounts of toxin closely related to shigatoxin. Even prior to the association of verotoxin producing E. coli with HUS, the E. coli producing this toxin had been implicated in the pathogenesis of hemorrhagic colitis. The commonest organism identified in hemorrhagic colitis was also E. coli 0157:H7. In most of the reported outbreaks of hemorrhagic colitis a small proportion of affected persons developed HUS.

Over the last few years, there has evolved a knowledge of the biology of verotoxin producing organisms and their role in HUS. Initially it was considered that there was a single cytotoxin closely related to shigatoxin, that was produced by all cytotoxin producing E. coli. These toxins which can be neutralized by antibody to shigatoxin are called shigalike toxin (SLT-I) or verotoxin I. SLT I is identical to toxin produced by Shigella dysenteriae I. Further, the demonstration that the same toxin could also be produced by other enteric pathogens suggests that verotoxin or related toxins are responsible for HUS seen in association with several different organisms.

Because of the association of HUS with bloody diarrhea, attention has also focussed on shigella dysenteriae I. This pathogen was reported first from Central America. Subsequent reports have appeared from Bangladesh and India. These children tend to be sicker and carry a high mortality. Shigella dysenteriae I produces Shigatoxin, a cytotoxin shown to cause fluid accumulation (often hemorrhagic) in the tied off segments of rabbit ileum, kills mice when inoculated intraperitoneally and kills certain mammalian cells in tissue culture. Although other serotypes produce toxin, the concentration of Shigatoxin is...
higher with shigella dysenteriae type I which is also the commonest cause of dysentery11.

Pathogenesis

Due probably to the heterogeneity of the disorder, many different theories have been proposed to explain the pathogenesis in HUS. The first to receive attention was the activation of the coagulation pathway as a primary event11,16. In general, factor V and VIII levels are either normal or slightly elevated, Prothrombin time normal and partial thromboplastin time normal or slightly prolonged. Fibrin degradation products are raised and antithrombin III levels may be reduced. Plasma infusions or plasmapheresis was found between the group receiving plasma infusion and the group on symptomatic therapy61.

Although neither platelet activating factors nor prostacyclin deficiency adequately explain the platelet activation in typical HUS, there is growing evidence that the platelet or the red blood cell destruction is related to contact with damaged endothelium and that the primary insult is to the endothelial cell. Endothelial cell swelling and separation of endothelial cells from the basement membrane, with reduction of the capillary lumen has been shown, following intravenous injections of verotoxin to rabbits62. Endothelial cells express Gb3, the receptor for verotoxin and it has been demonstrated that the toxin has a dose-dependent cytotoxic effect on cultured endothelial cells63. It has been proposed that the toxin may bind to receptors on the endothelial cells in the gastrointestinal tract, kidney and brain and damage or destroy cells. Platelets and red blood cells are then disrupted secondarily by mechanical forces during passage through the damaged capillary endothelium64.

Besides direct toxin-mediated insult, factors such as direct red blood cell membrane damage55 and white cell mediated toxicity66 may be important, specially in view of the leukocytosis and leukemoid reactions observed in shigella-associated HUS16. Although leukocytosis may indicate greater severity of inflammation, leukocytes may release oxygen free radicals and proteolytic enzymes on activation, causing damage to the endothelial cells67,68.

Clinical Picture

HUS occurs primarily in infants and young children, generally under 3 years of age69. Neonatal cases are rare and in adults, cases are reported secondary to the use of oral contraceptives or with hypertension. White children are affected more often than blacks70. Although genetic factors have been implicated, no common genetic marker is documented10.

Affected children are usually healthy before the onset of HUS when they develop gastrointestinal symptoms (non-specific with vague abdominal pain, diarrhea—often bloody) or acute respiratory infection12. Children may present with acute abdomen, simulating acute appendicitis, or intussusception71,72. The mild prodrome is followed in 7-10 days by onset of pallor, purpura, acute diarrhea (often bloody) oliguria and hematemesis. In severe forms, hypertension and seizures often
The Hemolytic Uremic Syndrome

complicate the picture and anuria lasting days to weeks is the rule.

Besides seizures, serious complications such as hemiparesis, decerebrate posturing and coma may be seen. These CNS manifestations generally imply a poor prognosis and a high mortality. Similarly jaundice may be seen in 15-30% children, reflecting hepatic involvement. Pericardial, myocardial and pulmonary involvement has been observed and congestive cardiac failure due to volume overload and hypertension are serious cardiovascular consequences.

There is good correlation between the severity of the renal involvement and the ultimate outcome. Prolonged anuria or oliguria and persistence of hypertension usually imply a poor prognosis. Recovery of renal function may take 2-3 weeks, although 12-18 months may elapse before complete renal recovery.

Investigations

The important investigations are as follows:

1. Hematologic studies

 The hemoglobin level is decreased, suggestive of the underlying hemolysis. The peripheral smear reveals fragmented RBC's, burr cells, helmet cells, teardrop cells and microspherocytes. RBC survival time is shortened with a high reticulocyte count, low or absent plasma haptoglobin, high bilirubin and occasional hemoglobinuria. The leucocyte count is elevated as a rule with predominant polymorphonuclear cells, although leucopenia is seen occasionally. Thrombocytopenia is the hallmark of HUS and may persist for 2 weeks. There is increased platelet destruction, with increase in plasma PL factor 4, platelet activating factor, platelet aggregation and thromboxane. Prostacyclin levels and platelet, Beta Thromboglobulin are decreased. Prothrombin time, fibrinogen and FDP are usually increased.

2. Electrolyte and Metabolic Abnormalities

 There is usually evidence of hyperkalemia, along with increased BUN and serum creatinine. The calcium level may be low or is raised occasionally. Hyperlipidemia and hypoproteinemia are also seen.

3. Renal Abnormalities

 Urinalysis reveals proteinuria, hematuria and occasionally hemoglobinuria.

4. Immunological Profile

 The complement levels (C1q, C3, C4, CH50, Factor B, Factor D) may be decreased, although C5 level is normal.

Management

There is no universal agreement on the treatment modalities of HUS, but early recognition, with awareness of potential complications is helpful in bringing the mortality down to <10% in developed countries.

Supportive therapy includes management of fluid and electrolyte balance, packed cell transfusion as needed, nutritional support and control of complications (seizures, hypertension). Special emphasis needs to be placed on correction of hyponatremia and hyperkaemia and of hypocalcemia and hyperphosphatemia. Hypertension is best managed by the use of Hydralazine and Nifedipine. Seizures may require the use of Diazepam intravenously and Phenytoin.

The control of azotemia, however, is most critical. As a consequence of renal insufficiency, catabolism and reabsorption of blood from the gastrointestinal tract the BUN may begin to rise at a rate more than 50 mg/dL/day. Early dialysis has been advocated to limit azotemia and generally agreed indications are:

1. BUN > 100 mg/dL.
2. Anuria > 24 hours.
3. Serum Potassium > 7mEq/dL on two occasions within 24 hours.
4. Serum Bicarbonate < 12 meq/dL.
5. Hypernatremia (serum Sodium > 150 mEq/dL).
6. Hypocalcemia (serum calcium < 7 mg/dL).
7. Hyperphosphatemia (serum phosphorous > 15 mg/dL).
8. Pulmonary edema.
9. CNS involvement (seizures, stupor, coma)

However, prophylactic dialysis has been advocated by some authors and may be started as soon as diagnosis is established. Where there is documented evidence of infection with Shigella, antibiotics may be given, keeping in mind the
sensitivity pattern. It may be pointed out that there are reports of an association between antibiotic administration and the development of HUS in Shigella infection and in verotoxin-associated HUS.

Specific Treatment

Keeping in mind the various factors implicated in the pathogenesis of HUS, many attempts have been made to reverse the microangiopathic process by specific treatments such as:

1. Anticoagulation therapy
2. Fibrinolytic agents
3. Antiplatelet drugs
4. Prostacyclin
5. Vitamin E
6. Plasmapheresis
7. Fresh plasma infusions
8. Intravenous immunoglobulins (IgG)

However, controlled trials using the above modalities of treatment has not shown any significant improvement.

Prognosis

The current mortality has been reduced to under 10% mainly with early dialysis. Bed prognostic factors include:

1. Age over 24 months.
2. Non-diarrheal prodrome.
3. Familial involvement with evidence suggestive of recessive or dominant inheritance.
4. Being an adult.
5. Progressive reduction in renal function or renal failure greater than 2-3 weeks duration.
6. Reappearance of hemorrhagic phenomenon after 10 days of illness.
7. Persistent leucocytosis.
8. Persistent or recurrent thrombocytopenia.
9. Severe CNS involvement.
10. Persistently low serum compliment levels.

Generally of those with typical HUS, most (18%) recover completely but only 22% of the children with atypical HUS recover. The prognosis in Shigella-associated HUS has usually been worse although it may have to do with the fact that this form occurs more in under-developed countries often in malnourished children, with fewer facilities.

Risk Factors

Risk factors for progression of an episode of diarrhea to HUS have not been clearly elucidated. In a retrospective case-control study of 30 children with shigella dysenteriae I infections, Butler showed that previous treatment with antibiotics (Ampicillin, TMP-SMZ) and elevated leucocyte count were factors associated with the development of HUS. Cimolai identified, again in a retrospective analysis, an association between young age and prolonged antimotility agent use with progression of E. coli 0157:H7 enteritis to HUS.

In a study of prognostic factors, young age, preceding diarrheal episode, presentation during summer, a short prodromal illness and early dialysis were considered to carry a better outcome whereas Lane in 1988, reported a poor prognosis with an elevated white blood count, prolonged period of thrombocytopenia and anuria. In this report, young age was associated with poor prognosis.

REFERENCES

The Hemolytic Uremic Syndrome

50. Fong JSC, Kaplan BS. Impairment of platelet

The Author:
Prof. Sajid Maqbool
Head of Department, Department of Pediatrics, Shaikh Zayed Hospital, Lahore.

Address for Correspondence:
Prof. Sajid Maqbool
Head of Department, Department of Pediatrics, Shaikh Zayed Hospital, Lahore.